6月28日消息 近日,阿里达摩院机器智能实验室有关冠状动脉中心线提取的论文被国际顶级医学影像会议MICCAI 2019提前接收。阿里在医疗AI领域再次取得新进展,继创下肺结节检测、肝结节诊断技术的重大突破后,又攻克了难度系数更高的心血管识别技术。
从CTA影像中准确提取心脏冠脉中心线是冠心病诊断的必备条件,也是诊断流程中耗时最多的一环。心脏冠脉几何特性复杂、血管特别细小,容易受到形态相似的静脉血管的干扰。如果出现血管阻塞,还有可能无法提取整根血管。
传统的心脏冠脉中心线提取方法大多存在人工交互多、耗时长等缺点。阿里巴巴提出了判别式冠脉追踪模型。这一模型由三维卷积神经网络构成,充分利用三维空间特征,可从影像中迭代搜索完整血管,且正确区分冠脉与静脉。
在学习了数十万个训练样本后,阿里AI无需人工交互,仅用0.5秒就能提取单根冠脉血管,提取完整冠脉树用时不超过20秒,相比传统方法效率提升近百倍。传统算法需要处理整个影像,阿里AI则能自动忽略冗余信息,大大提高效率。
阿里AI在0.5秒内全自动提取的单根心脏冠脉,医生可从重建的影像上快速发现病灶。右上为血管上的软斑块,右下为钙化斑块。
心血管疾病是世界上致死率最高的人类疾病。心血管疾病诊断的复杂性,导致AI医学影像识别在该领域应用极少。阿里AI能帮医生提升诊疗效率,提高冠心病接诊量。AI辅助医生进行心血管疾病诊断的未来近在咫尺。
近年来,阿里达摩院视觉计算团队在医疗AI领域屡有重大突破。2017年,阿里AI打破了国际AI检测肺结节准确度的世界纪录,这项技术已累计让近1000万体检客户受益。2018年,阿里AI诊断肝结节技术获两项世界第一,目前正继续研究能否判断肝癌。(完)